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Effects of decoherence on the shot noise in carbon nanotubes
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We study the zero-frequency noise in an interacting quantum wire connected to leads, in the presence of an
impurity. In the absence of quasiparticle decoherence the zero-frequency noise is that of a noninteracting wire.
However, if the collective, fractionally charged modes have a finite lifetime, we find that the zero-frequency
noise may still exhibit signatures of charge fractionalization, such as a small but detectable reduction in the
ratio between the noise and the backscattered current (Fano factor). We argue that this small reduction in the
Fano factor is consistent with recent observations of a large reduction in the experimentally inferred Fano
factor in nanotubes (calculated assuming that the backscattered current is the difference between the ideal
current in a multiple-channel noninteracting wire and the measured current).
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Shot noise has been long used to extract information
about the nature of the elementary excitations in a system.
Thus, shot-noise measurements have been used extensively
to study exotic phases, such as the ones arising in strongly
interacting one-dimensional systems. For example, they con-
firmed the presence of fractionally charged quasiparticles in
a fractional quantum Hall fluid.! While various proposals
have been made to use shot noise to characterize other one-
dimensional systems such as carbon nanotubes,>® a clear
confirmation of the fractionalized nature of the elementary
quasiparticles in nanotubes is still lacking. The major effect
that obscures the fractional character of the excitations in
nanotubes (and other nonchiral one-dimensional systems) is
the presence of metallic leads: at small frequencies the noise
probes the physics of the noninteracting leads and not the
physics of the nanotube. Thus, while in a chiral Luttinger
liquid (LL) (such as a fractional quantum Hall effect edge
state system), the Fano factor, defined as the ratio between
the noise and the backscattered current, is equal to the frac-
tional charge ge, in a nanotube the Fano factor has been
predicted® to be simply equal to the electron charge e.

Recent experiments’® have measured the Fano factor in
nanotubes and observed nevertheless a reduced Fano factor.
The value of the observed Fano factor in Ref. 7 is roughly
0.4e—too small to be explained by the noninteracting phys-
ics of the leads? but also too large to be consistent with the
presumed value of the fractional charge in nanotubes (0.2¢).”

We propose that this reduction in the Fano factor is the
result of a combination of three factors: the first are the in-
teractions in the wire. The second is the quasiparticle deco-
herence. We conjecture that, in connection with the elec-
tronic interactions, this will yield the modification of the
ideal conductance of a nanotube in contact with leads from
4e?/h to 4g,e?/h, even in the absence of impurities (g, is an
effective “fractional-charge”-type parameter that is close but
not equal to 1). We justify this conjecture by using the Lut-
tinger liquid formalism and by introducing a finite lifetime
for the fractionally charged quasiparticles. The physical fac-
tors that may have a role in the appearance of such a lifetime
are the (usually neglected) band curvature at higher energies,
various inelastic processes, or other types of interactions be-
tween electrons (three-body interactions, etc.). For example,
the effects of band curvature were treated in a quite a few
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works over the past years™!? and indeed the Green’s func-

tions, the self-energy, and properties such as the spectral
function were found to be affected by the band curvature. In
the future it would be interesting to calculate in this frame-
work the quasiparticle lifetime as well as the conductance of
a finite-size wire in contact with metallic leads. This is how-
ever an involved project, which is beyond the scope of the
present paper and will be addressed in a separate work.

The third factor comes from the experimental method of
measuring the backscattered current in a nonchiral LL, for
which the right-moving modes and the left-moving modes
are not spatially separated. This backscattered current cannot
be measured directly as in a fractional quantum Hall edge
system but it is assumed to be the difference between the
current in the absence of an impurity (estimated using the
ideal conductance of a nanotube 4e2/h) and the measured
current.

We claim that the combination of these three factors
yields a reduced value of the Fano factor consistent with the
experimental measurements. Indeed, the reduction in the
ideal conductance of the nanotube from 4e*/h to 4g.e*/h
generates large errors in the evaluation of the backscattered
current (that use the noninteracting conductance 4e?/h).
Moreover, the zero-frequency noise is also reduced from elg
to g.elp. This yields a reduction in the “true” Fano factor of
the system to g,e instead of e. The explanation proposed in
this theoretical paper is compatible and consistent with ex-
perimental results of Ref. 7. Our analysis also allows us to
propose a direct experimental test to extract the value of g,
from the dependence of the zero-temperature noise on the
conductance of the wire.

A quantum wire connected to metallic leads is presented
in Fig. 1. The interaction parameter g(x) is space dependent
and its value is g in the bulk of the wire and 1 in the leads.

The ideal ac conductance for this system in the absence of
impurity scattering and in the absence of decoherence is
given by>!!

) ..
e 2i sin(w/wy)
Go(w) = N 1+ Y riwlon _ pgiolr | 1)

where y=(1-g)/(1+g), w,=vy/ gL, vy is the Fermi velocity,
and L is the length of the wire. The effects of decoherence
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FIG. 1. A quantum wire with an impurity adiabatically coupled
to metallic leads. The leads are held at different chemical potentials

My and w,.

can at first naively be taken into account by adding an imagi-
nary self-energy to the propagating Green’s function or
equivalently using the standard field theory procedure of
adding an imaginary part to the energy such that w— w+i4,
where 6% 1/ 7 is the inverse quasiparticle lifetime.

As discussed in the introduction, some physical factors
that may contribute to a finite lifetime for the fractionally
charged quasiparticles include the curvature of the bands in
the nanotube at higher energies. However, in order to esti-
mate exactly the value of this lifetime (which may even de-
pend on momentum and energy), as well as of the conduc-
tance of a nanotube in contact with metallic leads in the
presence of interactions and decoherence, more extensive
calculations are necessary which are beyond the scope of this
work and will be addresses in a future publication.

We focus mainly on the dc conductance and take the limit
w— 0 while keeping ¢ finite. This yields

2 .
e 2 sinh(& w;)
Go= Y e Ve | (2)

We can study a few limits of Eq. (2). For example, if the tube
is much shorter than the coherence length, such that 6< wy,
the conductance of the wire goes back to the noninteracting
value of Gy=e?/h. In the opposite limit, when the tube is
much longer than the coherence length we find a value for
the conductance of Gy=2g/(1+g)e?/h, which is the conduc-
tance of an ideal semi-infinite wire-metal junction. In the
intermediate regime, for example, if the coherence length is a
few times the length of the wire, the conductance is reduced
to Gy=g,.e*/h, with g, close to but slightly smaller that 1. We
believe this situation is most relevant for the existing experi-
ments. Also, for a nanotube which has four channels of con-
duction Gy=4g,e>/h.

In the presence of an impurity, a portion of the current
will be backscattered, such that /=1,—Ip, with [,=G,V. In
general, at low temperatures and for voltages larger than w;,
the backscattered current has a nonlinear dependence on
voltage,>!? consistent with the LL theory. However, for volt-
ages smaller than w;, the dependence of the backscattered
current on voltage is linear.*'? The impurity-induced noise in
the current is'3

g.€
S =2g el TE)coth
g.eIpT(E)co <2k

V) +4kgTGyTHE), (3)
BT

where ﬂE)EGLOj—{, =g 1s the energy-dependent transmis-
sion of the wire, [ is the transmitted current, and the back-

scattered current is
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For g,=1, Eq. (3) describes adequately the noise for a non-
interacting system.'* For an infinite LL (g,=g), Eq. (3) cor-
rectly describes the noise if the backscattering is small
(7T(E) =1), moreover this formula is accurate up to a few
percent error even for lower transmission coefficients and up
to a bare transmission of the barrier of ~50%.'3 Equation (3)
also describes accurately the noise of an interacting LL with
leads;>! for this system it was proposed that g, is equal to 1.
The arguments we presented above for the ideal conductance
of a nonchiral LL connected to metallic leads imply that Eq.
(3) with a renormalized of g,~0.9 should be used to de-
scribe the noise in a nanotube.

We can now estimate the value of the Fano factor and
compare it with the experimentally measured value. The
Fano factor is given by the ratio between the noise and the
backscattered currents. The noise is measured directly in ex-
periments. However the backscattered current for a nonchiral
LL cannot be measured directly but is inferred” from the
measured transmitted current, /, using

. 62 eV dl
ly=4—V-| dE—>

0 edV )

eV=E

Thus, in the limit of small temperature, the experimentally
inferred Fano factor is given by

62 eV dl
4g,—V- | dE—

oS 8IsT(E) TE) h 0 edV| g
S 2el, I, 8 e’ voodl
2o | e
h 0 edV| g
(6)

One should note that the real Fano factor, S/2elz=g,7(E),
would be accessible if one could measure directly the back-
scattered current. In the limit of good transmission, 7(E)
=1, the real Fano factor would yield the value of the frac-
tional charge g,. However, given the experimental difficulties
to isolate the backscattered current, one estimates instead F™*.
It is not hard to see how the value of F* may easily differ
from the noninteracting value 1, even if g, is very close to 1.
For example, assuming that [=] SVdE/ edl/dV| -
Ea4gee2/ hV, (a acts as the transmission coefficient for a
wire with the ideal conductance g,e?/h and is always smaller
than 1), in the limit of very good transmission 7(E) =1, (1
—a<<1) we get

-«

Fr=g’ (7)

l1-ga
Thus, for @=0.9, and g,=0.9, F*=~0.4, in very good agree-
ment with the experimental observations. Note that this value
is reduced further by a factor of 7(E) in the regime where the
transmission deviates significantly from unity.

An important observation is that the measured Fano factor
F* depends strongly on the transmission of the wire « (de-
creasing toward zero with increasing « toward a perfect
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transmission). On the other hand the real Fano factor is
roughly independent or increases weakly with increasing the
differential conductance. Moreover, in the regime where the
dependence of the current on voltage is nonlinear, « will also
depend on voltage, and the measured Fano factor F* should
also depend on the voltage.

We also propose a direct test of our hypothesis and a
direct way of measuring g, by analyzing the dependence of
the zero-temperature noise in units of 2eVdI/dV on 1/V. Re-
writing Eq. (3) as

S=2g,e(V-1/GydlldV, (8)

we can see that
S=S/(2eVdlldV)=g[1-1/Gyl/V]. 9)

Thus one expects S to have a linear dependence on I/V, with
a g,/ Gy=h/4e* slope but with an x axis intercept at x,=G,
=g, 4¢*/h. The experimental data presented in Ref. 7 depict
only S/ as a function of dI/dV, which should have a slightly
different behavior but for which we can already observe a
small deviation from 1 in the intercept of the fit to the data
with the x axis. The data presented in Ref. 7 is however hard
to interpret due to both finite temperature effects, as well as
nonlinearities in 7(E) (due to the scattering of quasiparticles
at the two contacts). More precise data at lower temperature
is needed for a detailed quantitative comparison with the
theoretical predictions.

In conclusion, we have found that the interplay between
decoherence and interactions in nonchiral LL’s can explain

PHYSICAL REVIEW B 81, 033404 (2010)

the recent experimental observation of Ref. 7 that finds a
substantial reduction in the Fano factor from the noninteract-
ing value. Indeed, it has been predicted that the Fano factor
of a Luttinger liquid connected with metallic leads should be
the same as that of a system without interactions. Our analy-
sis has revealed that in the presence of interactions and de-
coherence the true Fano factor of the wire is reduced to a
value g, that is close but not equal to 1.

Furthermore, in an experiment one does not have access
to the true Fano factor but to the inferred Fano factor, which
is computed using a value of the backscattered current that is
not measured directly but estimated indirectly from the mea-
sured conductance using the noninteracting ideal conduc-
tance. We have demonstrated that even small reductions to
the true Fano factor and to the ideal conductance dramati-
cally lower the inferred Fano factor and can explain the value
observed in the experiments presented in Ref. 7.

Last, but not least, we have proposed a direct test for
extracting the value of the renormalized fractional-charge pa-
rameter g, from the dependence of the zero-temperature
noise (renormalized by the voltage and the differential con-
ductance) on I/V. A more comprehensive study of the Fano
factor in the presence of interactions and decoherence, as
well as an analysis of the interplay between various sources
of decoherence is under way.
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